630

CoNCLUSIONS

The utilization of the second harmonic of the amplitude-modu-
lated signal for the control of the search oscillator enables shifting the
microwave oscillator frequency close enough to the cavity resonant
frequency for the automatic frequency locking circuit to start the
control. This makes it possible to increase the range of thickness and
permittivity of the dielectric films measured by the system.
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Anomalous Convergence of Iterative Methods
in the Numerical Solution of
Electromagnetic Problems

M. ALBANI anxp P. BERNARDI

Abstract—Iterative methods applied to eigenvalue equations
can lead to anomalous convergence. It is shown that this can occur
when some of the eigenvalues are complex and the corresponding
eigenvectors satisfy a particular condition. A method of distinguish~
ing between anomalous and effective convergence is indicated.

Many electromagnetic problems can be solved by the finite differ-
ence technique, which leads to a system of difference equations whose
coefficient matrix A is generally real. The approximate solution of
the continuous problem is then obtained by solving the matrix eigen-
value problem (4 —AI)x=0. If the matrix 4 is very large it is neces-
saty to use an iterative method for the computation of the eigen-
values.

A useful procedure [1] that allows the computation of all the real
eigenvalues of 4 is to introduce the semidefinite positive matrix

C\) = (4 — AT — ) ¢))

and then to compute an eigenvalue A in the following manner.

1) Equation CQM®)x =0 (A being a guess at A) is solved by an
iterative method, e.g., successive displacements, starting with an
arbitrary real vector x(®.

2) A reestimate A? is computed from the Rayleigh quotient and
the value obtained replaces A©@ in C.

3) An alternation between steps 1 and 2 is carried out until A
seems to have converged to A.

The described procedure generally works satisfactorily; however,
we verified that anomalous convergences can occur when the matrix
A is unsymmetric. It is the purpose of this short paper to discuss these
anomalies and to show how to identify them.

Let us refer to a very simple example. Consider the 5X 35 circulant
matrix [2] whose first row is

a1y = [0: 1: 27 3: 6] (2)

and use it as a test matrix.
By using as iterative method in step 1 the method of successive
displacements and continuing the procedure for calculating A until
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A and AG+D differ by less than 0.1 percent, we obtained the following
results.

(Convergence Value)

A x® Aeonv

-3 1,2,3,4,5 —4.115
3 1,2,1,2,1 —4.115
5 1,2,1,2,1 12

It is easy to verify that only Acoay =12 is an eigenvalue of (2),
while Acony = —4.115 is an anomalous convergence value. However,
it can be noticed that the value —4.115 corresponds to the real part
of the complex eigenvalues of 4. The behavior shown in the example
has also been found in solving other real matrices obtained from
electromagnetic problems using the finite difference technique. The
anomalous convergence values are always found to be the real part
of complex eigenvalues. The above result must, therefore, be borne
in mind in the case of problems that are not schematized by a sym-
metric matrix, since, as complex eigenvalues may exist, there is the
possibility that the iterative procedure may give rise to a convergence
towards a quantity that does not correspond to an actual eigenvalue.
We will, therefore, examine in detail the whole procedure for studying
in which cases an anomalous convergence may occur.

Let £(C, A®) be the error-reducing (or iteration) matrix [2] rela-
tive to the iterative method adopted to solve C(\)x =0, and let u;
and I; be the eigenvalues and the corresponding eigenvectors of £.
Both y; and I; are in general complex. Supposing that the matrix 4
is not defective [3], the initial real vector x® can be expressed as

0 = i (atlir + ﬂiIif) (3)
=1

where a; and B: are real constants and I;=1I;,+jI;;. Performing s
iterations we obtain

2@ = Z (QzuBinr + ﬂwes]li) (4)
fa=l

where a generic eigenvalue and the corresponding eigenvector are
related by

£,
£31,~ =

[,u |-'(I, cos 58 — I, sin s6)
| w]*(Z; cos s6 + I. sin s6) (5
with u=]ule.

Let w1 be the eigenvalue having the greatest absolute value. Let
us distinguish the two cases

1) urreal (Iy, = Iy; I;; = 0).
Equation (4) for s increasing tends to
) = quu,ly.
Therefore, x® tends to assume the form of I; and the Rayleigh

quotient tends to become constant. Moreover, the Rayleigh quotient
gives a value N0 of X\ that is closer than A® to a true eigenvalue.

2) u1 complex.

Since the matrix £ is real, pa=m™* and I, =I;* Taking account
of (5), it is found that, as s increases, x® tends to

) = (a1 + a)Lelr + B — B) LTy = a(s) 1 + 6() Iy (6)

where a(s) and b(s) are oscillating functions of s. Consequently, x
oscillates in sign as s varies. However, let us consider the Rayleigh
quotient
x@T 450 _ (dIIrT + b[le)A (allr + b]1j)
x®OTx® (alu® + bI1T) (alir + bIy)

The quotient, which will generally vary with ¢ and & (i.e., with s),
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may assume a constant value, independently of s. This occurs if the
following relations hold:
IITTAIIT II;TAIIJ _ IerAII] + IIJTAIM _

ITl. 7Ly 1Ty, + LTI

M

If we now indicate by M.+7); the eigenvalues of 4, and by u-+jv
the corresponding eigenvectors, it can be shown that, in order that
all the relations (7) may hold, it is necessary, for an eigenvector of 4
(which we indicate by #-75), that

W3 =0 and |au|=|7]. 8
Moreover, if (8) holds, we have
k=N ®)

Letters
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We can conclude that if, on increasing s, the Rayleigh quotient
tends to a constant value %, one of the following conditions holds:
1) k is closer than A to a true eigenvalue; 2) & is equal to the real
part of a complex eigenvalue.

To verify whether the convergence is anomalous or not, the form
of x® must be examined. If x®, as s increases, oscillates in sign, the
convergence is anomalous and, in order to obviate this inconvenience,
the procedure must be reinitiated after changing A or %,
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Comments on “Noise in IMPATT Diode
Amplifiers and Oscillators”

B. SCHIEK anp K. SCHUNEMANN

In the above paper,! an extensive contribution on the noise of
IMPATT oscillators was presented, which is based on the theory of
Kurokawa [1]. In our opinion, however, the theoretical results of
this work do not apply in all cases to the experiments reported. The
authors define a load angle 6 (15a) which appears in the equations
for the AM and FM noise [(16b) and (17b)] and the correlation coeffi-
cient [(18b). Egs. (16b), (17b), and (18b)] describe the noise of the cur-
rent through the diode, which is of minor interest and difficult to
measure. The AM noise of the load current, which in reality was
measured,! differs considerably from the noise of the diode current
if 5%90°, In this case, an additional FM-AM conversion term ap-
pears which, under certain conditions, cancels exactly the load-
angle-dependent terms in the expression for the AM noise of the
diode current. These conditions are as follows.

1) The transforming network between the diode current and the
load current is lossless but otherwise arbitrary; losses in series or
parallel to the load or to the active device, however, are allowed.

2) The oscillator is tuned to maximum output power.

Then the AM noise and the correlation coefficient of the load
current are independent of 8, while the FM noise remains as in
(17b). This can be seen from the following formulas where the sym-
bols of Thaler et al.! have been used:

dZp |2
S449() = Sec(@/ At | =] -cos?y
9z |?
Swwo(ﬂ) = Scc(Q)/AOZ' ——| -sin? (0 — 71)
v4,? = —sin 7.

If the conditions 1) and 2) are not exactly satisfied, S44° and v4.°
will show only a weak dependence upon 6 as derived in [2]. The
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equations given above have been found to be in close agreement with
experimental results obtained for cavity-stabilized Gunn oscillators.
In these experiments the distance of the matched cavity from the
Gunn diode was varied by a set of disks in order to vary ¢ without
changing the optimum operating conditions. However, the resonance
frequency of the cavity has been varied,! which introduces a certain
mismatch outside the center frequency. Then a discussion of the
experimental results becomes more difficult because the tuning condi-
tion 2) is violated. The application of (16b) and (18b) is also in
this case not justified.
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Reply® by Hans-Jorg Thaler, Gerhard Ulrich,
and Gerhard Weidmann®

The comments of Schiek and Schiinemann on the results pre-
sented in our paper! are based on a misinterpretation of the equiva-
lent circuit used in our analysis. This can be shown by analyzing the
oscillator circuit in a reference plane at the load terminals. In this
representation the operating point of the oscillator in the complex
impedance plane is given by the lines of the frequency and RF cur-
rent dependence of the active device impedance intersecting each
other in the point of the real load impedance. The impedance trans-
formation from the reference plane at the active device terminals
(used in our original analysis) to the new reference plane does not
change the intersection angles of the two loci which enter the formulas
for the oscillator noise spectra. Therefore, the load current and the
loop current in our equivalent circuit have the same dependence on
the oscillator parameters, especially on the load angle 8. The experi-
mental results presented in our paper clearly contradict the state-
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